

Lunar Compositional Information Provided by Orbital Neutron Data from the Lunar Reconnaissance Orbiter (LRO)

David J. Lawrence¹, D. Ben Bussey¹, Joshua T. Cahill¹, Vincent R. Eke², Richard C. Elphic³, William C. Feldman⁴, Herbert O. Funsten⁵, Thomas H. Prettyman⁴, and Luis F. A. Teodoro⁶

¹Johns Hopkins University Applied Physics Laboratory ²University of Durham ³NASA Ames Research Center ⁴Planetary Science Institute ⁵Los Alamos National Laboratory ⁶Eloret Corporation; NASA Ames Research Center

Goal of Study

- The APL LSI node has a task to study surface-based hydrogen measurements using neutrons
 - Medium energy (or epithermal neutrons) strongly sensitive to planetary hydrogen abundances.
 - LSI study includes use of uncollimated/collimated neutron sensors.
- Goal of study: Use LRO neutron data to provide a benchmark understanding for uncollimated/collimated neutron sensors. Current presentation restricted to epithermal neutrons.
- The LRO Lunar Exploration Neutron Detector (LEND) is an orbital, collimated neutron detector.
 - Use PDS data from 9/15/2009 to 3/15/2010.
 - Use additional information from the LEND team.

LEND Sensor Overview

- STN1, STN2, and STN3 are uncollimated thermal neutr sensors.
- SETN is an uncollimated epithermal neutron sensor
- CSETN1 4 are four collima epithermal neutron sensors

Spacecraft Rotation

- The LRO spacecraft has separate periods of nadir and non-nadir pointing.
 - Instrument design optimized for nadir pointing.
 - Data useful for understanding sensor angular response.
- For non-nadir pointing, the spacecraft and collimator block neutrons from hitting the sensors.
- From 9/15/2009 to 3/15/2010, there were six periods when the nadir angle was greater than 100°.

Spacecraft Rotation

- On Oct. 18, the s/c twice rotated beyond 100°.
- Uncollimated epithermal sensor shows strong counting rate changes during rotation.
 - Spacecraft/collimator mater is blocking the Moon and sensors do not measure dire lunar neutrons.
 - Quantitative understanding requires spacecraft mass model.

Spacecraft Rotation

- On Feb. 6, the s/c once rotated beyond 100°.
- Uncollimated epithermal sensor shows strong counting rate changes during rotation.
 - Spacecraft/collimator mater is blocking the Moon and sensors do not measure dire lunar neutrons.
 - Quantitative understanding requires spacecraft mass model.

Uncollimated Polar Measurements

- Epithermal neutron show decrease at each pole.
- Uncollimated epithermal senso qualitatively similar to Lunar Prospector.

Global Maps

- Global map of uncollimated epithermal sensor (top).
- Vertical stripes due to imperfect timeseries corrections.
- Qualitatively simila to Lunar Prospecto

LEND Sensor Overview

- STN1, STN2, and STN3 are uncollimated thermal neutr sensors.
- SETN is an uncollimated epithermal neutron sensor
- CSETN1 4 are four collima epithermal neutron sensors

LEND Sensor Overview

Collimated Sensor

- STN1, STN2, and STN3 are uncollimated thermal neutr sensors.
- SETN is an uncollimated epithermal neutron sensor
- CSETN1 4 are four collima epithermal neutron sensors

- Data from Oct. 18.
- Collimated sensors show little change in counting rate during rotation (<2%).
- Small rotation effect not originally expected.
 - Ongoing discussions with LEND team to fully understand.

- Data from Feb. 6.
- Collimated sensors show little change in counting rate during rotation (<2%).
- Small rotation effect not originally expected.
 - Ongoing discussions with LEND team to fully understand.

Collimated Polar Measurements

 Shows similarity to Lunar
Prospector
epithermal
neutrons, yet
with poorer
statistics.

Global Maps

- Global map of all collimated detectors (top).
 - 5x5 deg equal-area pixe for better statistics.
- Comparison with Luna Prospector (LP) epithermals.
 - Collimated sensors sho nearside increase.
 - Uncollimated LP shows nearside decrease.
- Collimated map simila to LP fast neutrons.

Global Maps

90 45 0 -45 -90 -180 -135 -90 -45 0 45 90 135 180

- Global map of all collimated detectors (top).
 - 5x5 deg equal-area pixe for better statistics.
- Comparison with Luna Prospector (LP) epithermals.
 - Collimated sensors sho nearside increase.
 - Uncollimated LP shows nearside decrease.
- Collimated map simila to LP fast neutrons.

Conclusions

- Uncollimated sensor gives results consistent with Lunar Prospector epithermal neutrons.
 - Better uncollimated results (maps) are expected with more statistics and comprehensive data processing.
- Spacecraft rotation analysis shows effect with uncollimated sensor but not with collimated data.
 - Off-nadir slews provide key flight data to evaluate sensor angular response.
- Collimated sensors show both epithermal and fast neutron components.